ICT가 학업성취도에 미치는 영향
- PISA 2006을 중심으로 -
김혜숙
- hskim@keris.or.kr 02-2118-1334
- 현 한국교육학술정보원 정책연구평가팀
- 서울대학교 교육학 박사(교육평가 전공)

박현정
- hjp@snu.ac.kr 02-880-7641
- 현 서울대학교 교육학과 교수
- 미네소타대학교 교육학 박사(교육평가 전공)

서정희
- jhseo@keris.or.kr 02-2118-1277
- 현 한국교육학술정보원 정책연구평가팀
- 서울대학교 교육학 박사(과학교육 전공)

본 리포트는 한국교육학술정보원의 공식의견이 아니라 연구자의 개인 견해임을 밝혀둡니다.
차 례

Ⅰ. 서론 ... 1

Ⅱ. 선행연구 ... 3

Ⅲ. 연구방법 ... 6

Ⅳ. 연구결과 .. 12

Ⅴ. 결론 및 제언 .. 17

참고문헌 .. 20
1. 서론

이러한 기존의 ICT 효과성 관련 연구들이 가지는 제한점은 크게 세 가지로 나와볼 수 있다. 첫째, 실험 혹은 준실험 상황에서 특정 ICT 기반 교수·학습방법이나 소프트웨어의 효과성을 증명하는 실험에 초점을 두기 때문에 학생들이 일상적으로 활용하는 ICT가 학습에 기여하는가에 답하기 어렵다. 둘째, ICT를 활용하는 것이 어떤 방식으로 학생의 학습 결과에 영향을 미치는가, 즉, 중간 과정이 블랙박스 상태로서 인지적 측면에서 충분한 설명이 이루어지지 않고 있다(Shields, Behrman, 2000). 셋째, ICT 활용과 공변인 관계에 있는 학생의 성취도에 영향을 미칠 수 있는 제반 변인을 통제하지 않고 ICT 관련 변인의 효과를 살펴보았기 때문에 ICT 활용 자체가 효과적인지를 제시해주지 못하고 있다(Jacson et al., 2006).

본 연구는 PISA 2006을 이용하여 ICT가 성취도에 미치는 영향을 탐색함에 있어 특정 ICT 기반 교수·학습방법이 아닌 학생의 일상적인 ICT 활용이 성취도에 영향을 미칠 수 있는 제반 변인을 통제한 후에도 효과적인지를 밝혀보려 한다. 특히, 국외 연구에서 제시한 것과 같이 성취도에 영향을 미칠 수 있는 다양한 변인을 통제했을 때에도 ICT가 학생들의 성취도에 통계적으로 유의한 영향을 미치는지를 확인하고자 한다.

본 연구에서는 PISA 2006 자료를 활용하여 분석을 하고 있는데 이렇게 ICT가 성취도에 미치는 영향을 탐색할 때 OECD의 PISA 자료를 활용할 경우 다음과 같은 강점이 있다(OECD, 2003). 첫째, PISA 자료는 표본조사 결과를 토대로 모수치에 대한 변이(bias)가 발생하지 않도록 표집 가중치(sampling weight)를, 단단하게 유동성을 높여서 표준오차를 정확하게 도출하기 위해서는 반복 가중치(replication weight)를 고려하도록 함으로써 모집단에 대한 추론이 가능하도록 설계되어 있다. 둘째, PISA는 기존의 성취도평가와 달리 실생활에 필요한 능력, 즉 지식을 상황과 목적에 맞게 활용할 수 있는 기본적인 소양
(literacy)을 강조한다. 따라서 학생들의 ICT 활용이 미래사회에서 필요로 하는 역량으로서 성취도에 어떠한 영향을 미치는지를 분석할 수 있다.

이 연구의 기대효과는 다음과 같다. 첫째, 대표성 있는 OECD PISA 자료를 활용함으로써 ICT 활용이 성취도에 어떠한 영향을 끼치는지를 보다 체계적으로 확인할 수 있다. 둘째, 성별, 사회경제적 지위 등 학생변인 뿐 아니라 지역규모나 여건 등 학교변인을 함께 고려함으로써 ICT의 영향을 보다 체계적으로 탐색할 수 있다. 셋째, ICT가 성취도에 미치는 영향에 대한 검토를 통해 지금까지 ICT 관련 교육의 성과와 앞으로 나아가야 할 방향에 대해서 시사점을 얻을 수 있다.
II. 선행연구

Jonassen, Carr, Yueh(1998)는 컴퓨터가 지식을 형성하는 도구이며 학생들은 컴퓨터를 자
신의 개인적인 지식을 해석하고 조직하는데 사용하기 위해서는 일종의 마인드 툴(mind tool)로 활용해야 한다고 주장하였다. 예컨대, 데이터베이스를 활용하여 정보를 정리한다고 할 때, 내용 영역을 조직하는데 필요한 개념을 개인이 스스로 구성해야 한다는 것이다. 한편, 컴퓨터는 학습 과정에서 개개인이 적극적으로 참여하고, 집단 활동을 할 뿐 아니라 상호작용과 피드백을 주고받으며 현실세계의 맥락에 접근하는 것을 용이하게 해주기 때문에 학습에 기여할 수 있다고 보았다. 따라서 학생이 ICT를 활용함에 있어 이러한 조건이 충족되지 않을 경우, 성취도에 긍정적인 효과를 기대할 수 없다(Roschelle, et al., 2000). 이런 측면에서 보면 단순히 컴퓨터를 활용하는 것만으로 인지적 변화를 기대하기는 어려우며, 컴퓨터를 무엇에 그리고 어떤 방식으로 활용하는가가 중요하다고 할 수 있다.

한편, ICT의 효과성에 대해 엄밀하게 검증하기 위해서는 ICT 관련 변인과 성취도와의 관련성 분석에서 나아가 사회경제적 지위나 성별 등의 개인 변인과 교육과정이나 소재지와 같은 학교 변인을 함께 고려할 필요가 있다(Jackson et al., 2006). ICT 관련 성취도 효과성 연구 중에서 성취도에 영향을 줄 수 있는 여타 변인에 대한 통제를 시도한 최초의 연구는 Atewell과 Battle(1999)이 수행한 연구로 사회경제적 배경 및 인종 특성으로 인한 영
Ⅲ. 연구방법

본 연구에서는 성취도 영향을 줄 수 있는 여타의 학생 및 학교 변인을 통제한 상태에서 ICT 활용이 성취도 영향을 미치는지를 분석하기 위해 다중 분석(multi-level analysis)을 실시하였다. 대부분의 교육 자료에 대한 분석은 본산분석이나 회귀분석 등 전통적인 통계방법을 사용하고 있는데 이 경우 분석단위인 개인이 독립적으로 표집되며 집단마다 동일한 분산을 가지고 있다는 가정을 하게 된다. 그러나 학교 자료는 학생이 학급에 속하고, 학급이 학교에 속하는 위계적 자료구조를 가지고 있기 때문에 분석단위인 개인이 독립적이지 않다는 가정을 하게 된다. 또한 각 개인이 속한 학교의 분산이 동일하다는 가정도 현실적이지 않다. 결국 전통적인 통계방법을 사용할 경우 회귀모형의 설명력에 대한 통계적 검정을 실시하는 경우 사례 수에 의해 통계적 유의미성이 영향을 받을 뿐 아니라 단순한 평균비교에 그칠 뿐 어떤 변인이 실제로 유의미한 영향을 끼치는 정립되지 파악하기 어렵다.

이를 위해 독립변수로 ICT 관련 변인 뿐 아니라 개인 배경, 학습 태도 등의 개인 수준 변수 뿐 아니라 학교계열, 지역규모 등과 같은 학교 수준 변수를, 종속변수로는 과학, 수학, 일기 성취도를 사용하였다. 학생 및 학교 수준의 변인에 대한 사례 수, 평균, 표준편차, 최소, 최대 등 기술통계를 제시하면 <표 1>, <표 2>와 같다. 참고로 표준화 점수로 변환생성한 변인을 이루는 하위요소를 구체적으로 제시하면 <표 3>과 같다. 이 지수는 해당 변인을 이루는 하위 항목에 대한 주성분분석을 통해서 요인점수를 평균값이 0이고, 표준편차가 1인 표준화지수로 변환한 점수이다(OECD, 2008). 각 하위요소에 해당하는 문항들에 대한 신뢰도 분석 결과(Cronbach’s alpha), 대부분의 변인이 .83 이상으로 양호하였으나 하위 항목에 다양한 내용을 포함하는 사회경제문화적 지위변인의 경우 .799로 다른 변인에 비해 상대적으로 낮은 편이다.
표 1. 학생 수준 변인 기술통계

<table>
<thead>
<tr>
<th>변인명</th>
<th>사례수</th>
<th>평균</th>
<th>표준변량수</th>
<th>최소</th>
<th>최대</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>수학성취도 1</td>
<td>5176</td>
<td>546.81</td>
<td>92.61</td>
<td>212.88</td>
<td>836.80</td>
<td>수학성취도일반성적과의수דו장상요소와의관계(상)</td>
</tr>
<tr>
<td>수학성취도 2</td>
<td>5176</td>
<td>546.83</td>
<td>93.12</td>
<td>179.54</td>
<td>867.26</td>
<td>수학성취도일반성적과의수도장상요소와의관계(상)</td>
</tr>
<tr>
<td>수학성취도 3</td>
<td>5176</td>
<td>547.18</td>
<td>92.09</td>
<td>177.98</td>
<td>841.87</td>
<td>수학성취도일반성적과의수도장상요소와의관계(상)</td>
</tr>
<tr>
<td>수학성취도 4</td>
<td>5176</td>
<td>547.40</td>
<td>93.36</td>
<td>172.45</td>
<td>846.93</td>
<td>수학성취도일반성적과의수도장상요소와의관계(상)</td>
</tr>
<tr>
<td>수학성취도 5</td>
<td>5176</td>
<td>547.65</td>
<td>93.33</td>
<td>139.81</td>
<td>853.16</td>
<td>수학성취도일반성적과의수도장상요소와의관계(상)</td>
</tr>
<tr>
<td>읽기성취도 1</td>
<td>5176</td>
<td>555.08</td>
<td>89.59</td>
<td>187.01</td>
<td>812.23</td>
<td>읽기성취도일반성적과의수도장상요소와의관계(상)</td>
</tr>
<tr>
<td>읽기성취도 2</td>
<td>5176</td>
<td>555.33</td>
<td>88.75</td>
<td>174.29</td>
<td>807.02</td>
<td>읽기성취도일반성적과의수도장상요소와의관계(상)</td>
</tr>
<tr>
<td>읽기성취도 3</td>
<td>5176</td>
<td>556.12</td>
<td>88.57</td>
<td>149.31</td>
<td>814.62</td>
<td>읽기성취도일반성적과의수도장상요소와의관계(상)</td>
</tr>
<tr>
<td>읽기성취도 4</td>
<td>5176</td>
<td>556.83</td>
<td>88.06</td>
<td>188.98</td>
<td>796.34</td>
<td>읽기성취도일반성적과의수도장상요소와의관계(상)</td>
</tr>
<tr>
<td>읽기성취도 5</td>
<td>5176</td>
<td>556.93</td>
<td>89.09</td>
<td>167.76</td>
<td>824.15</td>
<td>읽기성취도일반성적과의수도장상요소와의관계(상)</td>
</tr>
<tr>
<td>과학성취도 1</td>
<td>5176</td>
<td>521.69</td>
<td>90.55</td>
<td>208.82</td>
<td>771.19</td>
<td>과학성취도일반성적과의수도장상요소와의관계(상)</td>
</tr>
<tr>
<td>과학성취도 2</td>
<td>5176</td>
<td>521.14</td>
<td>90.18</td>
<td>169.93</td>
<td>793.67</td>
<td>과학성취도일반성적과의수도장상요소와의관계(상)</td>
</tr>
<tr>
<td>과학성취도 3</td>
<td>5176</td>
<td>521.96</td>
<td>89.99</td>
<td>142.61</td>
<td>788.82</td>
<td>과학성취도일반성적과의수도장상요소와의관계(상)</td>
</tr>
<tr>
<td>과학성취도 4</td>
<td>5176</td>
<td>522.44</td>
<td>90.35</td>
<td>187.84</td>
<td>779.03</td>
<td>과학성취도일반성적과의수도장상요소와의관계(상)</td>
</tr>
<tr>
<td>과학성취도 5</td>
<td>5176</td>
<td>522.36</td>
<td>90.61</td>
<td>172.92</td>
<td>780.61</td>
<td>과학성취도일반성적과의수도장상요소와의관계(상)</td>
</tr>
<tr>
<td>성별</td>
<td>5176</td>
<td>0.50</td>
<td>0.50</td>
<td>0.00</td>
<td>1.00</td>
<td>0: 남, 1: 여</td>
</tr>
<tr>
<td>사회경제문화적지위*</td>
<td>5176</td>
<td>-0.01</td>
<td>0.82</td>
<td>-3.33</td>
<td>2.36</td>
<td>표준화점수</td>
</tr>
<tr>
<td>파외여부</td>
<td>5176</td>
<td>0.55</td>
<td>0.50</td>
<td>0.00</td>
<td>1.00</td>
<td>0: 비외부, 1: 파외</td>
</tr>
<tr>
<td>도구적동기*</td>
<td>5176</td>
<td>-0.27</td>
<td>0.94</td>
<td>-2.10</td>
<td>1.82</td>
<td>표준화점수</td>
</tr>
<tr>
<td>스터레스*</td>
<td>5176</td>
<td>-0.18</td>
<td>1.00</td>
<td>-2.15</td>
<td>2.06</td>
<td></td>
</tr>
<tr>
<td>지적능력*</td>
<td>5176</td>
<td>-0.22</td>
<td>0.90</td>
<td>-3.77</td>
<td>3.22</td>
<td></td>
</tr>
<tr>
<td>미래지향적동기*</td>
<td>5176</td>
<td>-0.25</td>
<td>0.93</td>
<td>-1.42</td>
<td>2.27</td>
<td></td>
</tr>
<tr>
<td>자아개념*</td>
<td>5176</td>
<td>-0.72</td>
<td>0.95</td>
<td>-2.36</td>
<td>2.24</td>
<td></td>
</tr>
<tr>
<td>컴퓨터활용기간</td>
<td>5176</td>
<td>3.61</td>
<td>0.55</td>
<td>1.00</td>
<td>4.00</td>
<td>4점직도</td>
</tr>
<tr>
<td>기상활용도</td>
<td>5176</td>
<td>4.50</td>
<td>0.75</td>
<td>1.00</td>
<td>5.00</td>
<td>5점직도</td>
</tr>
<tr>
<td>교육활용도</td>
<td>5176</td>
<td>2.43</td>
<td>1.40</td>
<td>1.00</td>
<td>5.00</td>
<td>5점직도</td>
</tr>
<tr>
<td>고난이도과제자신감*</td>
<td>5176</td>
<td>-0.25</td>
<td>0.85</td>
<td>-3.99</td>
<td>2.10</td>
<td>표준화점수</td>
</tr>
<tr>
<td>인터넷과제자신감*</td>
<td>5176</td>
<td>0.58</td>
<td>0.55</td>
<td>-4.85</td>
<td>0.76</td>
<td></td>
</tr>
</tbody>
</table>

주. * 표시는 표준화점수(standardized score)로 변환한 변인을 나타낸다.
표 2. 학교 수준 변인 기술통계

<table>
<thead>
<tr>
<th>변인명</th>
<th>사례 수</th>
<th>평균</th>
<th>표준편차</th>
<th>최소값</th>
<th>최대값</th>
<th>비교</th>
</tr>
</thead>
<tbody>
<tr>
<td>설립 유형</td>
<td>154</td>
<td>0.54</td>
<td>0.50</td>
<td>0.00</td>
<td>1.00</td>
<td>1: 국공립, 0: 사립</td>
</tr>
<tr>
<td>평균 SES</td>
<td>154</td>
<td>-0.01</td>
<td>0.44</td>
<td>-1.28</td>
<td>1.29</td>
<td>학생 사회경제문화적 지위 평균</td>
</tr>
<tr>
<td>지역 규모</td>
<td>154</td>
<td>4.24</td>
<td>0.97</td>
<td>1.00</td>
<td>5.00</td>
<td>5점 침도(1-5)</td>
</tr>
<tr>
<td>여학생 비율</td>
<td>154</td>
<td>0.49</td>
<td>0.38</td>
<td>0.00</td>
<td>1.00</td>
<td>0-1 사이</td>
</tr>
<tr>
<td>학생 1인당 컴퓨터수</td>
<td>154</td>
<td>0.27</td>
<td>0.20</td>
<td>0.06</td>
<td>1.03</td>
<td>학생 1인당 PC 수</td>
</tr>
</tbody>
</table>

표 3. 표준화지수로 생성된 변인의 하위 요소 및 Cronbach's alpha 계수

<table>
<thead>
<tr>
<th>변인명</th>
<th>하위 요소</th>
<th>하위 항목 수</th>
<th>Cronbach's alpha 계수</th>
</tr>
</thead>
<tbody>
<tr>
<td>사회경제문화적 지위</td>
<td>부모의 직업 지위, 학력, 가정의 소유물</td>
<td>16</td>
<td>.799</td>
</tr>
<tr>
<td>고난이도 ICT 과제에 대한 자신감</td>
<td>프레젠테이션 작성, 바이러스 제거 데이터를 CD에 복사, 고난이도 과제에 대한 자신감, 의료미디어 프레젠테이션 작성, 웹페이지 작성</td>
<td>8</td>
<td>.833</td>
</tr>
<tr>
<td>인터넷 과제에 대한 자신감</td>
<td>웹 브로시처, 파일 이동, 온라인 채팅, 이메일 사용, 인터넷에서 정보 검색, 파일이나 프로그램 다운로드, 인터넷에서 파일 다운로드</td>
<td>8</td>
<td>.837</td>
</tr>
<tr>
<td>과학에 대한 즐거움</td>
<td>과학 배우는 것이 재미있다 등</td>
<td>5</td>
<td>.909</td>
</tr>
<tr>
<td>과학 자아 효능감</td>
<td>자신에 대해서 설명할 수 있다 등</td>
<td>8</td>
<td>.935</td>
</tr>
<tr>
<td>과학에 대한 자아개념</td>
<td>과학 과목에 대한 학업을 잘 볼 수 있다 등</td>
<td>6</td>
<td>.920</td>
</tr>
<tr>
<td>과학 도구적 동기</td>
<td>정해에 하고 싶은 일에 도움이 되어서 등</td>
<td>5</td>
<td>.926</td>
</tr>
<tr>
<td>과학 미래지향적 동기</td>
<td>진학하는데 도움이 되어서 과학을 공부하다 등</td>
<td>4</td>
<td>.921</td>
</tr>
</tbody>
</table>

다음은 여러 변인들과의 관계를 중심으로 본 연구에서 설정한 모형을 제시하고자 한다. 먼저 기본모형(base model; random-effect ANOVA)의 1수준 모형에서 Yij는 학교j에 속한

1) 개인 수준이나 학교 수준이나 이외에도 설명변수를 넣지 않은 모형으로 개인수준의 총속변수에서 집단평균으로부터 개인이 얼마나 벗어났는지 그리고 해당 학교의 평균이 전체평균으로부터 얼마나 벗어났는지, 즉 개인과 학교의 분산(무선효과)이 동계적으로 유의미한 수준인지를 확인하기 위한 모형이다.
학업 성과의 종속변수로서 학업성취도를 의미한다. \(\beta_d \)는 학교의 평균이며, \(r_{ij} \)는 학교에 속한 개인의 학교평균에서 벗어난 무선오차로 무선효과(random effect)를 의미한다. 2수준 학교모형은 학교평균을 고정효과와 무선효과로 구분한 것으로서 각 학교의 평균 \(\beta_d \)는 전체 평균인 고정효과 \(\gamma_{00} \)과 해당 학교가 전체 평균에서 벗어난 정도를 의미하는 무선효과 \(u_{ij} \)로 구분된다.

1수준:
\[
Y_{ij} = \beta_{ij} + r_{ij}, \quad r_{ij} \sim N(0, \sigma^2)
\]

2수준:
\[
\beta_{ij} = \gamma_{00} + u_{ij}
\]

조건 모형의 1수준 모형(within-school model)에서는 \(X_i \)라는 설명변수가 끼어드는 모형으로 \(\beta_j \)는 이 설명변수의 계수로서 무선효과로 볼 수 있다. 각 학생수준 독립변인들은 전체평균으로 중심점 교정(grand-mean centering)을 통해 절편계수를 추정하였다. 여기서 학생 수준 설명변수로 설정한 변수는 개인배경, 과학에 대한 태도, ICT 관련 변인이다. 즉, 학생의 성별, 과외여부, 사회경제적 지위변인 등 개인배경 변인, 2학년의 ICT 활용도(활용기간, 가정과 학교에서의 활용 빈도)와 ICT 활용에 대한 자신감(고등학교 과목, 인터넷 과목) 등의 ICT 관련 변인, 그리고 학생의 정성적 변인, 즉 과학에 대한 태도(자아개념, 자아효능감, 즐거움, 도구적 동기, 미래지향적 동기) 변인을 포함하였다. 여기서는 개인의 여타 다른 변인을 통제하였을 때에도 ICT 활용이 성취도 향상에 효과적으로 작용하는 비판인지를 확인하고자 하였다.

2수준 모형에서는 절편 \(\beta_{ij} \)란 각 학교마다 변하는 무선효과로 설정하고 학교수준의 설명변수 \(W_d \)를 투입하여 학교수준의 평균에 유의미한 영향을 존 하는 학교수준의 변인이 무엇인지를 탐색하고자 하였다. 그리고 기울기 \(\beta_{ij} \)에서는 고정효과 뿐 아니라 무선효과를 가정

2) 무선효과는 평균이 0이고 표준편차가 \(\sigma \)인 정규분포를 따른다. 이 때 고정효과가 각 학생변인들의 효과가 모든 학교에서 동일하다고 가정하는 것이고, 무선효과는 각 학교에 따라 학생변인들의 효과가 다르다는 가정 하에서의 효과를 의미한다(장상진, 1995; Raudenbush & Bryk, 2002)

하되 설명변수를 투입하지 않았다. 본 연구에서는 초점이 학생의 성취도에 ICT 관련 변인을 유의한 영향을 미치는지를 확인하기 위한 것으로, 종속변수에 영향을 주는 요인의 탐색을 단순화시키기 위해서 절편계수에만 설명변수를 투입하는 것으로 설정하였다. 이 연구에서는 학교 수준 변인으로 1차적으로 학교급, 평균 사회경제적 지위 변인, 지역 규모, 여학생 비율, 과학학습을 권장하는 활동 정도, 컴퓨터 비율 등을 투입하였다.

\[
\beta_{ij} = \gamma_0 + \sum_{k=1}^{p} \gamma_k W_{ik} + u_{ij}
\]

\[
\beta_{ij} = \gamma_0 + u_{ij}
\]

1, 2수준의 무선효과는 2수준의 설명변수가 1개일 경우, 다음과 같은 다변량 정규분포를 가정한다. 무선효과 \(u_{ij} \)은 평균이 0, 분산이 \(T \)인 다변량 정규분포(multi-variate normal distribution)를 가정한다.

\[
\text{var}(\tau) = \sigma^2
\]

\[
\text{var}(u_{ij}) = \tau_{00}
\]

\[
\text{var}(u_{ij}) = \tau_{11}
\]

\[
\text{cov}(u_{ij}, u_{ij}) = \tau_{10} = \tau_{01}
\]
IV. 연구결과

1. 과학성취도

분석 결과, 개인배경, 과학태도, 학교특성 변인을 통제한 후에도 학생의 ICT 관련 변인 중 컴퓨터 활용기간과 인터넷 과제에 대한 자신감 변인이 성취도에 통계적으로 유의한 영향을 미치는 것으로 나타났다(<표 4 참조). 즉, 컴퓨터 활용기간이 길수록, 그리고 인터넷 과제에 대한 자신감이 높은 학생은 학교수록 과학성취도가 높은 것으로 나타났다. 그러나 가정과 학교에서의 컴퓨터 활용 정도 자체는 과학 성취도에 유의한 영향을 미치지 않는 것으로 나타났다.

이러한 결과는 Witter와 Senkbeil(2008)가 지적한대로 활용기간이 길수록 학생의 주요 변인을 통제하였을 경우, 학생의 컴퓨터 접근성이나 활용빈도 그 자체가 성취도에 직접적으로 영향을 미치는 것이 아니라는 점을 확인해주고 있다. 이에 비해 이메일이나 워드 프로그램 사용 등 일상적으로 컴퓨터를 활용하는 것에 대해서 자신감을 가지는 것이 성취도를 설명하는 주요한 변인으로 작용하는 것으로 나타났다. 즉, 일상적으로 ICT를 오랫동안 활용하고, 이것에 대해서 자신감이 충분한 학생은 과학 성취도가 높음을 알 수 있다. 반면 고난이도 ICT 과제의 경우, 최종 분석모형에서는 부적 영향을 미치는 것으로 나타났으나 통계적으로 유의하지는 않았다.

한편 ICT 외에 최종 분석모형에서 학생의 과학성취도에 영향을 미치는 것으로 나타난 변인은 개인 배경 중 성별이 α=0.05 수준에서 통계적으로 유의한 것으로 나타나 여학생이 남학생보다 과학적 성취도가 높은 것으로 나타났다. 참고로 사회경제문화적 지위는 일반적으로 학생의 성취도를 설명하는 주요한 변수이나, 개인의 정성적 변인과 학교 변인의 영향을 함께 고려하였을 때에는 통계적으로 유의하지 않는 것으로 나타났다. 또한 과학태도에서는 과학에 대한 즐거움, 자기 효능감, 자아개념이 α=0.0001 수준에서 과학성취도에 유의한 영향을 미치는 것으로 나타났다. 학교수준 변인 중에서는 지역규모는 α=0.05 수준에서, 학교의 평균 사회경제문화적 지위는 α=0.001 수준에서 통계적으로 유의한 영향을 미치는 것으로 나타났다. 즉, 학교가 속한 지역의 규모가 작을수록, 학교의 평균 사회경제문화적 여건이 좋을수록 과학성취도가 높은 것으로 나타났다. 한편, 학교의 학생 1인당 컴퓨터 수는 부적 영향을 미치는 것으로 나타났으나 통계적으로 유의하지는 않았다.

참고로 기초모형에서 집단내상관(ICC)은 0.353으로 전체 수학성취도 분산 중 약 35.3%가 학교 수준 변산이고 나머지 59.3%가 학생 수준 변산인 것으로 나타났으며, 최종 분석모형
에 의해 학교수준 변산의 62.9%와 학생수준 변산의 18.2%가 설명되는 것으로 나타났다.

2. 수학성취도
수학성취도에 대한 학교 및 학생 수준 변인의 다층모형 분석 결과, 개인배경과 학교특성 변인을 통제한 후에도 학생의 ICT 관련 변인 중 컴퓨터 활용기간, 가정에서의 활용도, 고
난이도 과제 및 인터넷 과제 자신감이 성취도에 통계적으로 유의한 영향을 미치는 것으로 나타났다(<표 4> 참조). 이 중 컴퓨터 활용기간과 인터넷 과제 자신감은 과학성취도와 마
찬가지로 a=0.001 수준에서 통계적으로 유의한 것으로 나타난 반면, 고난이도 과제에 대한
자신감은 a=0.01 수준에서 유의한 것으로 나타났다. 즉, 컴퓨터 활용기간의 길고, 인터넷
과제나 고난이도 ICT 과제에 대한 자신감이 높은 학생일수록 수학성취도가 높은 것으로
나타났다. 그러나 가정에서의 ICT 활용도는 a=0.05 수준에서 부적인 영향을 미치는 것으로
나타나 가정에서의 활용도가 높을수록 오히려 수학성취도는 떨어지는 것으로 나타났다.

한편 ICT 외에 최종 모형에서 개인 배경 중 성별이 a=0.01 수준에서 통계적으로 유의한
것으로 나타나 과학성취도와 달리 남학생이 여학생보다 수학적 소양이 높은 것으로 나타
났다. 또한 과학성취도와 달리 수학성취도에 있어서 사회경제문화적 지위는 a=0.001 수준
에서 통계적으로 유의한 영향을 미치는 것으로 나타났다. 학교수준 변인 중에서는 과학성
취도 분석결과와 마찬가지로 지역규모는 a=0.05 수준에서, 학교의 평균 사회경제문화적 지
위는 a=0.001 수준에서 통계적으로 유의한 영향을 미치는 것으로 나타났다. 즉, 학교가 속
한 지역의 규모가 작을수록, 학교의 평균 사회경제문화적 여건이 좋을수록 수학성취도가
높은 것으로 나타났다.

참고로 기초모형에서 집단내상관은 으로 전체 성취도 분산 중 약 40.6%가 학
교 수준 변산이고 나머지 59.4%가 학생 수준 변산인 것으로 나타났으며, 최종 분석모형에
의해 학교수준 변산의 64.6%와 학생수준 변산의 7.8%가 설명되는 것으로 나타났다.

3. 읽기 성취도
읽기성취도에 대한 학교 및 학생 수준 변인의 다층모형 분석 결과, 개인배경과 학교특성
변인을 통제한 후에도 학생의 ICT 관련 변인 중 컴퓨터 활용기간과 인터넷 과제 자신감이
a=0.001 수준에서 읽기 성취도에 통계적으로 유의한 영향을 미치는 것으로 나타났다(<표
4> 참조). 즉, 컴퓨터 활용기간이 길고, 인터넷 과제에 대한 자신감이 높은 학생일수록 읽
기성취도가 높은 것으로 나타났다. 그러나 가정이나 학교에서의 ICT 활용도는 통계적으로
유의한 영향을 미치지 못했다.

또한 ICT 외에 최종 모형에서 개인 배경 중 성별이 α=0.01 수준에서 통계적으로 유의한 것으로 나타나 수학성취도와 달리 여학생이 남학생보다 읽기 소양이 높은 것으로 나타났다. 참고로 사회경제문화적 지위의 경우 성취도와 마찬가지로 개인배경 변수와 학교 변수의 영향을 함께 고려하였을 때에는 통계적으로 유의하지 않는 것으로 나타났다. 학교수준 변수 중에서는 성취도 분석결과와 마찬가지로 학교의 평균 사회경제문화적 지위가 α =0.001 수준에서 통계적으로 유의한 영향을 미치는 것으로 나타났다. 참고로 기초모형에서 집단내상관(ICC)은 0.407으로 전체 수학성취도 분산 중 약 40.7%가 학교 수준 변산이고 나머지 59.3%가 학생 수준 변산인 것으로 나타났으며, 최종 분석모형에 의해 학교수준 변산의 53.3%와 학생수준 변산의 9.5%가 설명되는 것으로 나타났다.
표 4. ICT가 성취도에 미치는 영향: 다층분석 결과

<table>
<thead>
<tr>
<th></th>
<th>과학</th>
<th>수학</th>
<th>임기</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>기본모형</td>
<td>조건모형</td>
<td>기본모형</td>
</tr>
<tr>
<td>계수</td>
<td>표준 오차</td>
<td>계수</td>
<td>표준 오차</td>
</tr>
<tr>
<td>헤리</td>
<td>520.6***</td>
<td>4.4</td>
<td>518.6**</td>
</tr>
<tr>
<td>성별</td>
<td>7.0*</td>
<td>3.3</td>
<td>-12.0**</td>
</tr>
<tr>
<td>사회경제적 특성</td>
<td>1.3</td>
<td>1.5</td>
<td>1.7</td>
</tr>
<tr>
<td>지위</td>
<td>-0.6</td>
<td>2.4</td>
<td>2.8</td>
</tr>
<tr>
<td>경제적</td>
<td>12.2***</td>
<td>1.9</td>
<td>15.4***</td>
</tr>
<tr>
<td>컴퓨터 활용기간</td>
<td>-2.5</td>
<td>1.4</td>
<td>-3.9**</td>
</tr>
<tr>
<td>가정 활용도</td>
<td>0.2</td>
<td>1.0</td>
<td>1.8</td>
</tr>
<tr>
<td>학교 활용도</td>
<td>0.2</td>
<td>1.5</td>
<td>5.3**</td>
</tr>
<tr>
<td>고객상호관계</td>
<td>인터넷 가족</td>
<td>22.1***</td>
<td>2.3</td>
</tr>
<tr>
<td>자산관련</td>
<td>도구적 동기</td>
<td>-2.0</td>
<td>1.7</td>
</tr>
<tr>
<td>비적성</td>
<td>17.7***</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>판단</td>
<td>자산 효능감</td>
<td>11.7**</td>
<td>1.4</td>
</tr>
<tr>
<td>성적</td>
<td>0.1</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>도덕성</td>
<td>자아개념</td>
<td>9.0***</td>
<td>1.8</td>
</tr>
<tr>
<td>학교 수준</td>
<td>설립유형</td>
<td>-1.2</td>
<td>5.1</td>
</tr>
<tr>
<td>평균 기간</td>
<td>1.1***</td>
<td>8.9</td>
<td>9.0**</td>
</tr>
<tr>
<td>지역 규모</td>
<td>-8.0*</td>
<td>3.6</td>
<td>-8.0*</td>
</tr>
<tr>
<td>학교 비율</td>
<td>4.7</td>
<td>7.3</td>
<td>6.14</td>
</tr>
<tr>
<td>학생 1인당 컴퓨터 수</td>
<td>-9.1</td>
<td>18.8</td>
<td>-9.6</td>
</tr>
<tr>
<td>신뢰도</td>
<td>0.946</td>
<td>0.867</td>
<td>0.957</td>
</tr>
<tr>
<td>교육적 특성</td>
<td>학교수준분산 ((\sigma^2))</td>
<td>5300.9</td>
<td>4331.0</td>
</tr>
<tr>
<td>학교수준분산 ((\sigma^2))</td>
<td>5300.9</td>
<td>4331.0</td>
<td>5144.5</td>
</tr>
<tr>
<td>ICC</td>
<td>.353</td>
<td>.167</td>
<td>.040</td>
</tr>
</tbody>
</table>

*<0.05, **<0.01, ***<0.001
본 연구에서는 PISA 2006 자료를 이용하여 ICT가 성취도에 영향을 미치는지를 경험적으로 탐색하고자 하였다. 특히, 국외 연구에서 제시한 것과 같이 성취도에 영향을 미칠 수 있는 다양한 변인을 통제했을 경우에도 ICT가 학생들의 성취도에 통계적으로 유의한 영향을 미치는지를 확인하고자 하였다. 이를 위해 PISA에서 제시하는 ICT 활용 여부, 활용기간, 특정 장소(가정과 학교)에서의 ICT 활용 정도 그리고 과제 유형(고난도 과제와 인터넷 과제)에 따른 ICT 활용 자신감 등이 성취도에 영향을 미치는지를 확인하고자 하였다.

이 연구에서는 PISA 2006을 이용하여 개인배경, 주요 학습태도, 학교특성 관련 변인을 통제한 후, ICT 관련 주요 변인이 성취도에 미치는 영향을 분석한 결과는 다음과 같다. 첫째, 컴퓨터 활용 기간이 모든 교과 성취도에서 통계적으로 유의한 영향을 미치는 것으로 나타나 컴퓨터 활용기간이 길수록, 모든 교과에서 성취도가 높아지는 것으로 나타났다. 둘째, 인터넷 과제에 대한 자신감은 모든 교과에서 통계적으로 유의한 영향을 미치는 것으로 나타났으나, 고난도 과제에 대한 자신감은 오히려 수학 성취도에서만 유의한 것으로 나타났다. 즉, 인터넷 과제에 대한 자신감이 높은 학생들은 수학 성취도에서 통계적으로 유의한 영향을 미치는 것으로 나타났다. 셋째, 고난도 과제의 경우는 수학 성취도에서만 높은 것으로 나타났다. 사라, 학교에서의 ICT 활용도는 모든 교과 성취도에서 통계적으로 유의한 영향을 미치지 않는 것으로 나타났다. 그리고 인터넷 과제의 이용에 따른 수학 성취도에서 유의한 영향을 미치는 것으로 나타났다. 그 외 교과의 성취도에는 유의한 영향을 미치지 않고 있다. 마지막으로, 학교 수준에서 투입한 학생 1인당 컴퓨터 수는 성취도에 통계적으로 유의한 영향을 미치지 않는 것으로 나타났다.

특히, 성별이나 사회경제적 지위 변인, 학교 특성 등을 통제한 후에도 긍정적 영향도 그 자체보다는 인터넷 과제에 대한 자신감이 높은 학생들은 학생들이 수학 성취도에서 통계적으로 유의한 영향을 미치지 않는 것으로 나타났다. 인터넷 과제는 주로 문서 작성, 이메일 수용, 온라인 채팅, 파일 이동, 인터넷에서 정보 검색, 파일이나 프로그램 다운로드, 이메일의 파일 첨부 등으로 이루어져 있는데, 이는 정보를 수집하고 분석·평가하여 실제로 다른 이들에게
전달하는 등 ICT 리터러시와 직결되는 기본적인 능력이라고 할 수 있다. 여기서 ICT 리터러시는 디지털 기술, 의사소통기구, 네트워크를 이용하여 정보에 접근, 관리, 통합, 평가, 창조, 의사소통할 수 있는 능력으로서 (International ICT Literacy Panel, 2001) 이 연구를 통해 ICT 활용에 대한 기본적인 소양을 쌓는 것이 성취도 향상에 기여한다는 것을 확인할 수 있다. 그러나 이와 같은 결과는 PISA에서 측정하는 성취도의 개념이 교과지식에 대한 이해 수준에서 벗어나 범교과적인 문제해결능력을 측정하는데 주안점을 두고 있다는 점을 감안한다면, 일상적인 ICT 과제에 능숙한 것이 다양한 문제 상황에서 요구되는 과제를 효율적으로 해결하는데 기여할 수 있음을 의미한다.

이와 같은 분석 결과에 근거하여 정책적 제언을 내리면 다음과 같다.

첫째, 지식기반 사회에서 다양한 문제 상황을 효율적으로 해결하기 위해서는 정보를 수집, 분석, 평가, 전달하는데 필요한 기본적인 소양으로서 ICT 활용 능력을 키워줄 필요가 있다. 현재의 ‘정보통신기술교육 운영지침’은 수업 시간에 10% 이상 ICT를 활용하도록 권장하는 수준이기 때문에 일반 학교에서 수업시간에 ICT 활용 여부는 학교여건과 담당교사에 따라 다를 수밖에 없다. 한편, 초등학교에서 재량활동으로 정보화 관련 특기적성교육에 참여하는 학생 비율은 2003년 32.8%, 2004년 30.6%, 2005년 29.7%, 2006년 26.7%로 점점 낮아지는 추세이다. 중고등학교 역시 2006년 기준으로 정보교육과를 선택하는 학생 비율이 중학교는 6.9%, 인문계 5.8%, 전문계 22.1%로 전문계고를 제외한 중·고등학교에서 정보교육과를 선택하는 학생 비율이 매우 낮은 실정이다(김형주, 김혜숙, 2006). 또한 앞으로 도입될 개정 교육과정에 따르면 초등학교 재량활동 시간이 줄어들고, 중등학교에서는 현재보다 많은 선택과목과 도입됨에 따라 컴퓨터 교과를 통해 ICT 활용능력을 갖출 기회는 더욱 줄어들 것이다. 따라서 컴퓨터 교과가 아닌 일반 교과에서 ICT 활용이 확대될 수 있도록 교육과정 안에 제도적 장치가 마련될 필요가 있다.

둘째, 소외계층을 포함한 모든 학생에게 ICT에 접근할 수 있도록 기회가 더욱 확대될 수 있도록 정책적 지원 노력이 필요하다. ICT 활용기간이 길수록, 그리고 일상적 ICT 과제에 대한 자신감이 높을수록 성취도가 높아진다는 사실은 ICT 접근 기회가 성취도 향상에 긍정적으로 작용함을 시사한다. 따라서 학생 간에 사회경제적 배경으로 인해 ICT 접근 기회에 있어서 격차가 벌어진다면, 즉, 디지털리프트(digital divide)가 커질수록 이들 간 성취도 차이가 더욱 벌어질 가능성이 더 높다. 이와 같은 성취도 차이는 그들이 직업시장에 진입할 때, 사회경제적 격차로 연결될 수 있다는 점에서 간과할 수 없는 문제이다. 그러나 가장이 나 학교에서의 활용 빈도 자체가 대체로 성취도에 유의한 영향을 미치지 않는다는 사실은 ICT 활용교육이 현재까지 얼마나 많이 활용할 것인지에 초점을 맞추었다면 앞으로는 무엇
올 위해서, 어떠한 방식으로 활용할 것인가, 즉 양보다는 질 측면으로 전환할 필요가 있음을 시사한다.

그리고 현재까지 많은 연구들이 학업성취도를 중심으로 그 효과를 확인하고 있으나 학습동기, 자아효능감, 몰입도 등과 같은 정서적인 부분이나 의사소통이나 협업능력 등과 같은 사회적 측면에서의 효과도 지속적으로 중요하게 논의될 필요가 있다.
참고문헌

이종연, 구양미, 진석연, 서정희, 고범석 (2007). 창의적 문제해결(Creative Problem Solving) 모형 기반 초등학교 사회과 수업의 효과성 분석. 교육공학연구. 23(2), 105-133.

ICT가 학업성취도에 미치는 영향
- PISA 2006을 중심으로 -

<table>
<thead>
<tr>
<th>발행</th>
<th>2008년 12월 일</th>
</tr>
</thead>
<tbody>
<tr>
<td>발행인</td>
<td>황 대 준</td>
</tr>
<tr>
<td>발행처</td>
<td>한국교육과학정보원 (www.keris.or.kr)</td>
</tr>
<tr>
<td>주 소</td>
<td>☀100-400 서울 중구 쌍림동 22-1 KERIS빌딩 전화: (02)2118-1114 팩스: (02)2278-4341</td>
</tr>
<tr>
<td>등록</td>
<td>제22-1584호(1999년 7월 3일)</td>
</tr>
<tr>
<td>인쇄처</td>
<td>(주)서보미디어 전화: (02)2253-7800</td>
</tr>
</tbody>
</table>

본 내용의 무단 복제를 금함.
* 에듀넷: www.edunet.net
* 리스: www.riss4u.net